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Abstract. Error rates of a Boolean perceptron with threshold and either spherical or Ising
constraint on the weight vector are calculated for storing patterns from biased input and output
distributions derived within a one-step replica symmetry breaking (RSB) treatment. For unbiased
output distribution and non-zero stability of the patterns, we find a critical load,αp, above which
two solutions to the saddlepoint equations appear; one with higher free energy and zero threshold
and a dominant solution with non-zero threshold. We examine this second-order phase transition
and the dependence ofαp on the required pattern stability,κ, for both one-step RSB and replica
symmetry (RS) in the spherical case and for one-step RSB in the Ising case.

1. Introduction

Since the ground-breaking work of Gardner [1] on the storage capacity of the Boolean
perceptron, the replica technique of statistical mechanics has been successfully employed
to investigate many aspects of the performance of simple neural network models. While
most of the research concentrated on exploring the learning ability and network capacity
below saturation (for a review see [2, 3] and references therein), we will concentrate in this
paper on the errors of a Boolean perceptron above its saturation limit, or capacity limit
αc, working within a replica framework. Earlier studies [4–6] have particularly examined
the cases of zero stability of the stored patterns, the effect of different error functions on
the error rates, and the distribution of pattern stabilities. Here, we will extend this work
by allowing for a threshold and biased input and output distributions and investigate both
real-valued (spherical constraint) and binary weights (Ising constraint).

We find that the Boolean perceptron with threshold has a rich behaviour reflecting the
extra degree of freedom introduced by the threshold. In the case of arbitrary input and
output distributions we find that the threshold can always compensate for a ferromagnetic
bias in the weights but not vice versa, which will allow us to argue that the paradigm of
eliminating the threshold in favour of a ferromagnetic bias in the weights, which has been
adopted in some papers (e.g. [1, 7]), should be reconsidered. The introduction of a threshold
enables the elimination of the input distribution bias, by suitably rescaling the threshold and
stability.

Especially intriguing is the role of the threshold for non-zero stability and unbiased
output distributions; above some critical pattern load,αp, we find two solutions to the
saddlepoint equations: one has a non-zero threshold and a lower free energy with an

§ E-mail address: A.H.L.West@aston.ac.uk

0305-4470/97/103471+26$19.50c© 1997 IOP Publishing Ltd 3471



3472 A H L West and DSaad

asymptotic error rate of 50%, the other is identical to that of a perceptron without threshold
and exhibits a higher free energy with an asymptotic error rate above 50%. The order
parameters show a second-order phase transition at the bifurcation point and have different
asymptotic values.

This work is further motivated by the fact that the results of this calculation can
be applied iteratively to yield the storage capacity of a class of networks with variable
architecture produced by constructive algorithms [8, 9] which will be reported elsewhere
[10, 11]. This is possible since these algorithms construct the network architecture during
training, starting with a simple Boolean perceptron and adding more perceptrons only when
needed, i.e. when the existing network is incapable of performing the requested task. The
training is performed separately for each perceptron after its creation and the weights are
subsequently frozen. Therefore, results for the perceptron are sufficient to calculate the
capacity limit of multilayer networks produced by certain constructive algorithms. So far,
only an information theoretic upper bound has been derived for two-layer networks with
fixed hidden-layer-to-output weights [12]. Statistical-mechanics calculations have been
hampered by the inherent difficulties of the replica calculation. Replica symmetric (RS)
treatments [13, 14] violate the above-mentioned upper (Mitchison–Durbin) bound. Other
efforts [15] break the symmetry of the hidden units explicitly prior to the actual calculation,
but the resulting equations are approximations and are difficult to solve for large networks.

The paper is structured as follows. In section 2 we introduce the model, the Boolean
perceptron with threshold (and spherical or Ising constraint) and correlated output and input
distributions. We briefly explain the replica framework and outline the one-step replica
symmetry breaking (RSB) calculations for the two constraints for both the free energy and
distribution of pattern stabilities. This is followed in section 3 by a discussion of the error
rate and the pattern-stability distribution of the two Boolean perceptron models. We finish
with a discussion of the significance of the results and some concluding remarks in section 4.

2. Replica calculation of the Boolean perceptron

In this section we will outline the replica calculation for the Boolean perceptron trying to
learn a set of random dichotomies above its saturation limit,αc. The calculation is similar
to [4, 5] for real-valued weights and a spherical constraint and to [6] for binary weights,
i.e. an Ising constraint; however, we allow for a threshold and biased output and input
distributions. In the following the real-valued weight Boolean perceptron will be referred to
as the spherical (Boolean) perceptron, whereas the binary-valued weight Boolean perceptron
will be referred to as the Ising (Boolean) perceptron. This section is divided into three parts.
In section 2.1, the replica calculation for the free energy of the perceptron above saturation
is explained briefly. In section 2.2, the same framework is then extended to calculate the
distribution of pattern stabilities for the perceptron. In section 2.3, we will outline the
differences for the calculations of the Ising perceptron and present the resulting equations.

2.1. Free energy of the spherical perceptron

In the capacity problem the aim is to adjust the parameters of a spherical perceptron, the
synaptic weight vector,W ∈ RN , and threshold,θ ∈ R, to minimize the error on a set of
p = αN input–output mappings,ξµ ∈ {−1, 1}N → ζµ ∈ {−1, 1} (µ = 1, . . . , p), from an
N -dimensional binary input space to binary targets. The output of the perceptron is hereby
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determined by

σµ = sgn

(
1√
N
W · ξµ − θ

)
= sgn(hµ) (1)

where sgn(x) is the sign ofx, andhµ is termed the activation of the perceptron. We define
the error function to be

E =
∑
µ

Θ(κ − λµ) (2)

whereλµ = ζµhµ and Θ(x) is the Heaviside step function, which is 1 forx > 0 and 0
otherwise, andκ is the stability with which we require the patterns to be stored. This error
function, counting the number of misclassifications, is often referred to as the Gardner–
Derrida cost function.

The calculation will be performed in the thermodynamic limit,N → ∞, with a finite
example load,α = p/N . In the following, we will be interested only in the minimum error
possible and will therefore consider zero-temperature Gibbs learning, i.e. we consider the
free energy,f = −β−1 logZ for β → ∞, which is assumed to be self-averaging in the
thermodynamic limit. Hence

〈〈f 〉〉 = − lim
β→∞

lim
N→∞

1

Nβ
〈〈logZ〉〉 = − lim

β→∞
lim
N→∞

1

Nβ

〈〈
log

∫
dµ (W )e−βE

〉〉
(3)

where〈〈·〉〉 is the quenched average over the distribution of patterns, consisting of integrations
over biased input and output distributions. The binary input distribution is independent of
the pattern and site indicesµ andj :

P(ξ
µ

j ) = P(ξ) = 1
2(1+mi)δ(1− ξ)+ 1

2(1−mi)δ(1+ ξ). (4a)

The output distribution is also independent of the pattern index:

P(ζµ) = P(ζ ) = 1
2(1+mo)δ(1− ζ )+ 1

2(1−mo)δ(1+ ζ ) (4b)

wheremi andmo represent the input and output bias respectively.
Furthermore, in the case of real-valued weights, we enforce a spherical constraint on

the weight vector

dµ (W ) = δ(W ·W −N)
N∏
i=1

dWi (5)

to avoid the invariance(W , κ)→ (λW , λκ). To be able to pick out the two possible error
sources (wrongly on, where the requested target isζµ = −1 but the output isσµ = 1 and
wrongly off, whereζµ = 1 but σµ = −1), we introduce auxiliary variables,ε+ andε−, in
the error function (equation (2))

E =
∑
µ

Θ(κ − λµ)[ε−Θ(ζµ)+ ε+Θ(−ζµ)] =
∑
µ

V (λµ, κ, ζµ) (6)

whereV is the error measure for a single example and has been introduced for convenience†.
The derivatives of the free energy with respect toε+ or ε− at ε+ = ε− = 1 will give us
the wrongly on andwrongly off errors respectively.

† This is also consistent with earlier work [5] and in principle allows a calculation for an arbitrary cost function.
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To be able to perform the quenched average we make use of the replica trick
〈〈logZ〉〉 = limn→0(〈〈Zn〉〉 − 1)/n. After application of standard techniques and introduction
of the order parameters†

Qσρ = 1

N
W σ ·W ρ for σ < ρ Mσ = 1√

N

N∑
i=1

Wσ
i (7)

their Lagrange multipliers,̂Qσρ andM̂σ , and the Lagrange multiplier,̂Eσ , associated with
the spherical constraint‡, the replicated partition function is

〈〈Zn〉〉 =
∫ ∞
−∞

∫ i∞

−i∞

(∏
σ

dMσdÊσ
2π

)(∏
σ<ρ

dQσρdQ̂σρ

2π

)
× exp

{
N

[
G0(Q̂σρ, Êσ )+ αGr(Qσρ, θσ ,Mσ )+ 1

2

∑
σ

Êσ −
∑
σ<ρ

QσρQ̂σρ

]}
(8)

where

G0(Q̂σρ, Êσ ) = log

{∫ ∞
−∞

∏
σ

dWσ exp

[
− 1

2

∑
σ

ÊσW
σWσ +

∑
σ<ρ

Q̂σρW
σWρ

]}
(9)

is the prior constraint Hamiltonian and

Gr(Qσρ, θσ ,Mσ ) = log

〈 ∫ ∞
−∞

(∏
σ

dλσdλ̂σ
2π

)
exp

{
− βV (λσ , κ, ζ )− i

∑
σ

λ̂σ λσ

−iζ
∑
σ

λ̂σ (θσ −miMσ)− 1
2(1−m2

i )

[∑
σ

λ̂2
σ + 2

∑
σ<ρ

λ̂σ λ̂ρQσρ

]}〉
ζ

(10)

is the replicated Hamiltonian, and where〈·〉ζ denotes an average over the output distribution.

2.1.1. The replica symmetric ansatz.To make further progress one has to make an
assumption for the structure of the replica space. The simplest assumption is that replica
symmetry holds (which is believed to correspond usually to a connected solution space):

Qσρ = q1 and Q̂σρ = q̂1 for σ < ρ

Mσ = M θσ = θ and Êσ = Ê for all σ.
(11)

Inserting the above ansatz into equations (9) and (10) and taking then→∞ limit yields

GRS
0 =

1

2

q̂1

Ê + q̂1

− 1

2
log(Ê + q̂1)

GRS
r =

〈 ∫
Dt log[FRS(t, β, q1, κ, ζ θ)]

〉
ζ

(12)

where all integrals without explicit limits are from−∞ to +∞, Dt = dt exp(−t2/2)/√2π
and the functionFRS is given by

FRS(t, β, q1, κ, ζ θ) =
∫

dλ√
2π(1− q1)

exp

(
−β

[
V (λ, κ, ζ )+ (ψ +

√
q1t)

2

2x

])
(13)

† One could also allowρ = σ . In this caseQσσ = 1 andQ̂σσ = Êσ due to the spherical constraint.
‡ The contribution ofM̂σ actually vanishes in the thermodynamic limit.
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wherex = β(1− q1) and

ψ(λ) = λ+ ζ(θ −miM)√
1−m2

i

. (14)

When taking theβ →∞ in order to access the ground state with least errors only, one has
to distinguish two regimes. Below the capacity limit,αc (above which the training error
becomes strictly positive),q1 < 1 even forβ → ∞. At and above the capacity limit,
q1 → 1 for β → ∞, because the volume of the individual solution spaces vanishes. We
therefore make the self-consistent ansatz forα > αc that x = β(1− q1) remains finite in
the zero-temperature limit. In this case, the integral overλ in (13) can be calculated by
the saddlepoint method; the exponential is evaluated atλ = λ0, whereλ0 minimizes the
square bracket for a givent . After calculatingλ0(t) for the Gardner–Derrida cost function
and eliminatingq̂1 and Ê, the RS free energy atε+ = ε− = 1 simplifies to:

〈〈fRS〉〉 = α
〈 ∫ √2x−τ

−τ
Dt
(t + τ)2

2x
+H

(√
2x − τ

) 〉
ζ

− 1

2x
(15)

where

τ = ψ(κ) = κ + ζ(θ −miM)√
1−m2

i

and H(u) =
∫ ∞
u

Dt. (16)

The free energy has to be evaluated at the saddlepoints with respect to the variablesx andθ .
The capacity limit,αc, can be calculated from the saddlepoint equations by taking the limit
x →∞. A more detailed examination of the free energy and the saddlepoint equations is
deferred to section 2.1.3.

Above the capacity limitαc it is evident that different solutions can misclassify different
patterns and the solution space will in general be disconnected. It has also been previously
shown that in this case the replica symmetric saddlepoint is locally unstable [16], and the
Parisi scheme of successive steps of RSB [17] must be employed.

2.1.2. The one-step RSB ansatz.Here, we will restrict ourselves to a one-step RSB
calculation. We note that it has been shown recently that, for the spherical perceptron
with the Gardner–Derrida cost function, infinitely many RSB steps are necessary to derive
the correct result [18]. Although one-step RSB is, therefore, incorrect it is a very good
approximation, as a two-step RSB calculation carried out for the spherical perceptron without
threshold yielded only minor corrections in the free energy [18].

The ansatz for the one-step RSB is thatQσρ is ann× n matrix

(Qσρ)nn =


Q1 Q0 · · · Q0

Q0
. . .

. . .
...

...
. . .

. . . Q0

Q0 · · · Q0 Q1


nn

(17)

whereQ0 is anm×m matrix with elementsq0 andQ1 is anm×m matrix with 0 on the
diagonal andq1 elsewhere. The ansatz for̂Qσρ has the same block structure as forQσρ

with matricesQ̂0 andQ̂1. We further assume

Mσ = M θσ = θ and Êσ = Ê for all σ (18)

similar to the RS case (11). The order parameters,q1 and q0, can be interpreted as the
typical overlap between pairs of weight vectors in the same and different solution spaces
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respectively. Clearly, if the solution space is connectedq0 ≡ q1, which is the case for
α 6 αc, we recover replica symmetry. Again using the above ansatz in equations (9) and
(10) and taking then→ 0 limit yields

GRSB
0 = 1

2

q̂0

(Ê + q̂1)−m(q̂1− q̂0)
− 1

2
log(Ê + q̂1)− 1

2m
log

(
1− q̂1− q̂0

Ê + q̂1

)
GRSB

r =
〈 ∫

Dt
1

m
log[FRSB(t, m, β, q0, q1, κ, ζ θ)]

〉
ζ

(19)

where the functionFRSB is given by

FRSB(t, m, β, q0, q1, κ, ζ θ) =
∫

Dz

[ ∫
dλ√

2π(1− q1)

× exp

{
− β

[
V (λ, κ, ζ )+ (ψ +

√
q0 t +√q1− q0 z)

2

2β
√

1− q1

]}]m
(20)

with ψ as in (14).
Similar to the RS case, we are interested in theβ → ∞ limit where q1 → 1 with

x = β(1−q1) finite. Theλ-integral in (20) can again be evaluated at the saddlepointλ = λ0,
whereλ0 minimizes the square bracket in the exponential for givenz andt . Furthermore, the
replica space dimensionm→ 0 (β →∞) as we only access one solution and it becomes
exponentially unlikely that any other solution is visited [17]. We therefore make a second
self-consistent ansatz thatw = m/(1 − q1) remains finite in the zero-temperature limit.
After some algebra, including determiningλ0(z, t) for the Gardner–Derrida cost function
and elimination ofq̂1, q̂0 and Ê, the one-step RSB free energy forε+ = ε− = 1 is given
by

〈〈−fRSB〉〉 = α

wx

〈 ∫
Dt log[FRSB(t, w, x, q0, κ, ζ θ)]

〉
ζ

+ q0

2x(1+ w1q) +
log(1+ w1q)

2wx

(21)

whereτ is as before (16),1q = 1− q0, and the functionFRSB has simplified to

FRSB(t, w, x, q0, κ, ζ θ) =
∫ √

2x−µ√
1q

− µ√
1q

Dz exp

[
−w

2

(√
1q z + µ

)2]

+H
(

µ√
1q

)
+ e−wxH

(√
2x − µ√
1q

)
(22)

with µ = τ +√q0 t . The free energy has to be evaluated at the saddlepoints with respect
to the variablesw, x, q0 andθ .

2.1.3. Saddlepoint equations and training error.Examining both the RS (15) and the one-
step RSB (21) free energies more closely, one sees that the ferromagnetic biasM of the
weight vector (7) appears only in the definition ofτ (16) and can be set to zero without
loss of generality (w.l.o.g.)†. The order parameter,M, is therefore superfluous, i.e. any
ferromagnetic bias in the couplings can be compensated by an adjustment of the threshold
θ . This is in contrast to the usual paradigm, which eliminatesθ in favour ofM (e.g. [1, 7]),
and therefore reduces the number of actual parameters of the perceptron. However, this is
clearly only possible ifmi 6= 0 and will lead to large values ofM for smallmi .

† The fact thatM is redundant is a direct consequence of the fact that the integral overM̂ does not contribute in
the thermodynamic limit.
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We further note that the bias of the input distribution,mi , appears only in the definition of
τ (16) also and its sole influence is a rescaling of the threshold and the stability. Therefore,
a biased input distribution has the same effect on the performance of the perceptron as
the increase of the stability for an unbiased input distribution. This can be understood in
geometric terms. If the input distribution is unbiased, input vectors lie randomly distributed
on the edges of the unit hypercube and two distinct patterns have a typical overlap of
zero. Biased patterns on the other hand are correlated and have a typical overlap of
m2

i with each other, i.e. they concentrate on a ‘conelike’ section of the hypercube. The

typical distance between patterns is therefore reduced by
√

1−m2
i . Any solution of the

weight vector corresponds to a hyperplane which separates the two kinds of patterns. The
achieved stability is half the distance of the two correctly classified patterns with the shortest

separation across this plane and hence the stability decreases by
√

1−m2
i as well. Only at

zero stability does the increase of the input bias have no effect on the performance of the
perceptron. In the following, we will therefore setmi = 0 w.l.o.g.

The saddlepoint equation of the derivative of the free energy with respect toθ at
ε+ = ε− = 1 gives

0=
〈
ζ

∫ √2x−τ

−τ
Dt (t + τ)

〉
ζ

and 0=
〈
ζ

∫
Dt log[FRSB(t, w, x, q0, κ, ζ θ)]

〉
ζ

(23)

for RS and one-step RSB respectively. For zero bias, one can readily see thatθ = 0 is
always a solution to this and the other saddlepoint equations; regaining the results of the
perceptron without threshold. However, this does not necessarily imply that this is the only
solution to the saddlepoint equations, as demonstrated in section 3.

Taking the derivatives of the free energies with respect toε− and ε+ at ε+ = ε− = 1
and dividing byα gives the error rate (i.e. the number of errors divided by the total number
of patterns) ofwrongly off andwrongly on patterns respectively

ε
off/on
RS = 1

2(1±mo)H(
√

2x − κ ∓ θ)

ε
off/on
RSB = 1

2(1±mo)

∫
Dt

e−wxH
(√

2x −√q0 t − κ ∓ θ
)

FRSB(t, w, x, q0, κ,±θ)
(24)

where we have setmi = 0 w.l.o.g.
We note that we find no numerical difference between the total training error† and the

free energy in the thermodynamic limit for both RS and one-step RSB and conclude that
the normalized entropy,s = S/N , must diverge sublinearly or logarithmically forβ →∞.
One can calculate the first-order finite temperature correction of the free energy for both RS
and one-step RSB analytically, and find that it is negative and proportional to log(1q), and
equal to the low-temperature entropy. Unlike in the binary case, where a negative entropy
is physically impossible and therefore an indication that the employed replica ansatz breaks
down, a negative entropy has no such physical meaning in the real-valued case, due to an
arbitrary entropy offset.

2.2. Pattern stability distribution

The pattern stability distribution (PSD)P(3) is of interest as it provides the distance of
stabilized(3 > κ) and unstabilized patterns(3 < κ) to the given threshold stabilityκ,

† That is the error rates multiplied byα.
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i.e. it gives an idea how seriously patterns are misclassified. This extra information will
be quite helpful in examining the already mentioned bifurcation point in order-parameter
space in section 3. For error functions other than the Gardner–Derrida cost function (e.g.
the perceptron or adatron cost function), the integration of the probability density† p(3)
over the unstabilized patterns yields the error rateε [21, 5], which is otherwise inaccessible.
The PSD is further of great importance to the dynamics of related attractor neural networks,
by determining the basin of attraction of the memory states [19, 20].

The PSDP(3|D) is in general dependent on the instances of the data setD =
{(ξµ, ζµ)|µ = 1, . . . , p}. As we are interested in its average valueP(3) = 〈〈P(3|D)〉〉,
we quench over the instances of the examples

p(3) = 〈〈p(3|D)〉〉 =
〈〈

1

Z

∫
dµ (W ) exp

[
− β

∑
µ

V (λµ, κ, ζµ)

]
δ(3− λ1)

〉〉
(25)

where the pattern stability of pattern 1 is calculated w.l.o.g. as the pattern distribution is
independent of the pattern indexµ. Here, dµ(W ) is the spherical constraint (5), but the
above equation holds for any weight prior. In the thermodynamic limit, one can calculate
this average using the replica trick. The calculation is similar to that of the free energy
except for the average over the first pattern [19]. After some algebra one finds for the RS
ansatz

pRS(3) =
〈 ∫

Dt
FRS(t, β, q1, κ, ζ θ)δ(3− λ)
FRS(t, β, q1, κ, ζ θ)

〉
ζ

(26)

whereFRS(13) has to be evaluated at the saddlepoint of the free energy. With the one-step
RSB ansatz one finds a similar expression to equation (26) forpRSB(3) only with FRS

replaced byFRSB (20).
For β → ∞ above the capacity limitαc, bothpRS(3) andpRSB(3) can be simplified

along the lines of [21, 5] as theλ-integral in bothFRS andFRSB can be evaluated at their
respective saddlepointλ0.

Calculatingλ0 for the Gardner–Derrida cost function equates the RS probability density

pRS(3) =
〈
δ(3− κ)

∫ √2x−τ

−τ
Dt + Θ(3− κ)√

2π(1−m2
i )

exp
[− 1

2φ
2
]

+
Θ
(
κ −3−

√
1−m2

i

√
2x
)

√
2π(1−m2

i )

exp
[− 1

2φ
2
] 〉
ζ

(27)

wherex andθ have to be evaluated at the saddlepoint of the free energy (15) as mentioned
above andφ = ψ(3) with ψ as in (14). The PSD has three terms, aδ-function contribution
for 3 = κ, i.e. at the error boundary, and two Gaussian contributions, which leave a gap

of width
√

1−m2
i

√
2x.

In the one-step RSB ansatz, the probability density can be calculated similarly leading
to

pRSB(3) =
〈 ∫

Dt
NRSB(t, w, x, q0, κ, ζ θ)

FRSB(t, w, x, q0, κ, ζ θ)

〉
ζ

(28)

† We use uppercaseP notations for probability distributions and lowercasep for probability densities.
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where the denominatorFRSB is identical to (22) and the numerator is given by

NRSB(t, w, x, q0, κ, ζ θ) = δ(3− κ)
∫ √

2x−µ√
1q

− µ√
1q

Dz exp

[
−w

2

(√
1q z + µ

)2]
+ Θ(3− κ)√

2π1q(1−m2
i )

exp

[
− %2

21q

]

+
Θ
(
κ −3−

√
1−m2

i

√
2x

)
√

2π1q(1−m2
i )

exp

[
− %2

21q
− wx

]
(29)

where% = φ + √q0 t and the values of the order parametersx, w, q0 and θ are again
determined by the saddlepoint of the free energy (21).

Comparing the one-step RSB with the RS PSDs we find three similar contributions, aδ-

peak at the stabilityκ, and two exponential terms, separated by a gapwidth of
√

1−m2
i

√
2x.

In general, one finds [5] that one-step RSB has a smaller gap, which is formally due to a
reduced saddlepoint value ofx, and a reduced weight of theδ-function contribution. The
one-step RSB distribution has also lost the Gaussian form of the RS distribution, due to
the presence of the denominator and the integration overt . We further find a correction
to the third contribution, which represents unstabilized, i.e. erroneous, patterns, which has
acquired an extra supressive exponential term, e−wx . As we have already pointed out in
section 2.1.3, the role of a non-zero input bias is the rescaling of the thresholdθ , the stability

κ and the pattern stability3 with a factor of
√

1−m2
i , and can therefore be set to zero

w.l.o.g.
It is worth mentioning that the gap and theδ-peak are a feature of training algorithms

above saturation employing the Gardner–Derrida cost function [22]. This is due to the fact
that an algorithm achieving least errors attempts to stabilize the least unstabilized pattern,
until any movement of the hyperplane will destabilize a pattern lying on the threshold
decision boundary, leading to a fraction of patterns exactly on the decision boundary and
leaving a gap between stabilized and unstabilized patterns. The above work has been
complemented by a numerical study [23], where the numerical PSD exhibits a gap and a
δ-peak which are both finite but smaller than the theoretical one-step RSB predictions within
the accuracy of the simulations. This is consistent with a recent proof [18] which showed
that any model exhibiting a gap in the PSD necessitates infinitely many RSB steps.

2.3. Ising perceptron

In the case of the Ising perceptron the calculation is very similar. In fact, the calculation of
the replicated HamiltonianGr (10) is exactly the same as it only depends on the quenched
average over the training examples. The difference is therefore mainly in the prior constraint
HamiltonianG0 (9), where the integration over weight space is performed. Since the weight
vector of the Ising perceptron is binary, i.e.W ∈ {−1, 1}N , the measure in weight space (see
equation (5)) becomes a sum

∫
dµ (W ) = ∏N

i=1

∑
Wi=±1, and all terms with the Lagrange

multiplier, Êσ , associated with the spherical constraint vanish in equation (8). The prior
constraint Hamiltonian equates to

GI
0(Q̂σρ) = log

{∏
σ

exp

[
−
∑
σ<ρ

Q̂σρW
σWρ

]}
. (30)
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Again, using two ansatzes for the structure in replica space, RS and one-step RSB, identical
to those made in section 2.1, one finds

GIRS
0 (q̂1) = − q̂1

2
+
∫

Dt log

[
2 cosh

(
t
√
q̂1

) ]
GIRSB

0 (q̂1, q̂0) = − q̂1

2
+ m

2
(q̂1− q̂0)

+ 1

m

∫
Dt log

[ ∫
Dz 2 cosh

(
t
√
q̂0+ z

√
q̂1− q̂0

)]m (31)

where IRS(B) stands for the RS or one-step RSB ansatz for the Ising perceptron.
Great care has to be taken in theβ → ∞ limit, which is discussed in detail in [6],

here we will only outline the main results. One finds that the entropy of the RS solution
is negative forα > αI

S with q1 < 1 in the zero-temperature limit, and is therefore incorrect
aboveαI

S. Studying the one-step RSB solutions identifiesαI
S as the capacity limitαI

c. The
RS error only becomes strictly positive forα > αI

E whereq1→ 1 with x = β(1−q1) finite
and the RS free energy of the Ising perceptron can be simplified [16], resulting in

〈〈fIRS〉〉 = α
〈 ∫ √2x−τ

−τ
Dt
(t + τ)2

2x
+H

(√
2x − τ

) 〉
ζ

− 1

πx
(32)

which is identical to the RS free energy of the spherical perceptron (15) but for a constant
2/π in the lastα-independent term. The RS solution of the Ising perceptron atα is therefore
the same as the RS solution of the spherical perceptron atα̃ ≡ πα/2, which holds also for
error rates and the distribution of pattern stabilities. The RS solution of the Ising perceptron
will therefore not be discussed further.

However, as already mentioned above, the RS solution is incorrect forα > αI
S and

β > βc, where one finds one-step RSB solutions, which are characterized byq1 = 1
and q̂1 = ∞ for finite β. One further findsm = βc/β, q̂0 → 0 and makes the self-
consistent ansatz thatv = mβ and y = m

√
q̂0 are finite in the zero-temperature limit.

Inserting this ansatz back into (32), one findsGIRSB
0 (∞, q̂0) = GIRS

0 (y2)/m. The replicated
HamiltonianGIRSB

r (19) is calculated similarly to the spherical perceptron, with the above
ansatz becoming equivalent tox → 0 andw→∞ with wx finite. The one-step RSB free
energy of the Ising perceptron is therefore given by

〈〈−fIRSB〉〉 = α

v

〈 ∫
Dt log[FIRSB(t, v, y, q0, κ, ζ θ)]

〉
ζ

+ 1

v

∫
Dt log[2 cosh(yt)] − 1qy

2

2v

(33)

for ε+ = ε− = 1 and the functionFIRSB is

FIRSB(t, v, y, q0, κ, ζ θ) = e−v + (1− e−v)H
(

µ√
1q

)
(34)

with µ as before. The free energy has to be evaluated at its saddlepoint with respect to the
variablesv, y, q0 andθ . The normalized entropy of the Ising perceptron can be shown to
be identical to zero [6].

Identical to the spherical perceptron the ferromagnetic bias on the weightsM and the
bias of the input distributionmi can be set to zero w.l.o.g. We also find as before thatθ = 0
is always a solution to the saddlepoint equation for zero output bias and the error rates of
wrongly off andwrongly on patterns are given respectively by

ε
off/on
IRSB =

1

2
(1±mo)

∫
Dt

e−vH
(√

2x −√q0 t − κ ∓ θ
)

FIRSB(t, v, y, q0, κ,±θ) . (35)
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The PSD densitypIRSB(3) of the Ising perceptron within a one-step RSB ansatz can be
calculated similarly to the spherical perceptron in section 2.2. In the zero-temperature limit,
we usex → 0 andw→∞ with wx finite to find

pIRSB(3) =
〈 ∫

Dt
NIRSB(t, v, y, q0, κ, ζ θ)

FIRSB(t, v, y, q0, κ, ζ θ)

〉
ζ

(36)

where the denominatorFIRSB is identical to (34) and the numerator is given by

NIRSB(t, v, y, q0, κ, ζ θ) = [Θ(3− κ)+ e−vΘ(κ −3)]√
2π1q(1−m2

i )

exp

[
− %2

21q

]
(37)

with % as in (29) and the values of the order parametersy, v, q0 andθ are evaluated at the
saddlepoint of the free energy (33). The PSD of the Ising perceptron has a common Gaussian
numerator centred around%, but for an extra exponential suppression of the unstabilized
patterns3 < κ proportional to e−v.

Comparing the PSDs of the spherical and the Ising perceptron, shows no difference
within the RS ansatz besides the already mentioned rescaling ofα. However, one finds
striking differences within the one-step RSB treatment: the gap in the distribution as well
as theδ-peak contribution at the threshold boundary,κ, have vanished in the PSD of the
Ising perceptron in contradiction to [22] (see section 2.2). However, this could be explained
by the fact that the Ising perceptron cannot adjust its decision boundary continuously, due
to the discreteness of the weights. Therefore, one may expect that unstabilized patterns lie
arbitrarily close to the decision boundary and the patterns do not accumulate at the threshold
stability.

Whereas it has been shown previously that the one-step RSB ansatz for the spherical
perceptron is not exact [18], which is formally due to the gap in the PSD, the Ising perceptron
does not exhibit this gap and there has been some argument whether one-step RSB is exact
for this model†. Krauth and Ḿezard [6] have carried out a second RSB step and have
found no solution different to the one-step RSB result, although one should mention that
most of their numerical work was carried out around the capacity limit. Fontanari and
Meir [24] have calculated the entropy of the Ising perceptron in a microcanonical approach
and found that their RS solution is identical to the one-step RSB solution in the canonical
approach. They calculated that the microcanonical RS saddlepoint is locally stable for all
α, which also suggests that the ansatz is correct, as a breakdown would require that the
RS saddlepoint is locally stable but globally unstable even forα →∞. A third approach
by Horner [25] investigating the learning dynamics using dynamic mean field theory which
does not rely on the replica trick, indicates a slightly different picture. He finds that the
fluctuation dissipation theorem (FDT) holds for high temperatures and the dynamics are
ergodic validating the use of RS. For lower temperatures ergodicity is broken but one finds
that a quasi FDT (QFDT) holds, parametrized by a variablem, which has a similar role
as the one-step RSB parameterm but has to be chosen inconsistently to the choice of
m in replica theory. These dynamics were found to be strictly stable for infinite times
indicating that no further RSB steps are necessary in this regime. Furthermore, there exists
a third regime with additional diverging time scales which corresponds to further breaking
of replica symmetry‡. However, the relevance of dynamic mean-field theory for validating
replica ansatz is debatable.

† One-step RSB has been proved to be exact for several models, e.g. for the generalized Sherrington–Kirkpatrick
(SK) spin glass withp = ∞ spin interactions, which is equivalent to the random energy model and can be solved
exactly [26].
‡ An explicit phase diagram is given only for the perceptron and adatron cost functions.
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3. Discussion

Calculating the saddlepoint solutions for the order parameters and the error rates as a function
of the normalized example number,α, for a range of stabilities,κ, and output biases,mo, we
find striking differences in the solution space to the case of a perceptron without threshold
even for zero (output) bias [5, 6].

Since we found the zero bias results the most intriguing, we will limit most of our
discussion to this special case, as we find that the introduction of a single free parameter to
the perceptron, a threshold, can change the space of solutions accessible to the perceptron
radically even for unbiased input and output distributions. We will first examine the order-
parameter solution space and the total error rates of the spherical perceptron and the Ising
perceptron in sections 3.1 and 3.2. This is followed by a discussion of the PSD in section 3.3
and a discussion of the phase transition found in parameter solution space as a function of the
stability κ in section 3.4. We will further assess the influence of a biased output distribution
in section 3.5. As we have discussed in section 2.1.3, a biased input distribution can be
absorbed through rescaling of the stability and therefore need not be discussed in more
detail.

3.1. Error rates and order-parameter solution space of the spherical perceptron

In figure 1 we show the total error rates,ε, and the percentrage ofwrongly on errors,εon

for the spherical perceptron in both the RS and the one-step RSB ansatz, formo = 0 and
κ = 0.1 as a functionα. Below the capacity limit,αc, the error rate,ε(α), is identically
zero. Forα > αc, we find that the RS estimate of the error rate is always below the one-step
RSB estimate for allα > αc and replica symmetry is broken as expected [16]. In figure 2,
the one-step RSB overlap,q0, is plotted as a function ofα in the same scenario, indicating
the degree of replica symmetry breaking.

In figure 1 one can also see that forα > αc, the proportion ofwrongly on errors,
εon, is initially 1

2. This corresponds to the thresholdθ being identical to zero as one

Figure 1. The total error rate,ε, of the spherical perceptron as a function ofα for κ = 0.1
is predicted by one-step RSB to be larger than the estimate of RS. Forα > αc both theories
initially predict a portion of 1

2 for wrongly on errors,εon, indicating zero threshold (see also
figure 2). Above a criticalαp, εon decreases abruptly and quickly approaches zero signalling
a solution with non-zero threshold. This solution exhibits a lower asymptotic error rate than a
perceptron without threshold. The predicted value ofαp is smaller for one-step RSB than for RS.
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Figure 2. The prediction of the one-step RSB overlap,q0, for the solution goes to zero as
α→∞ for the perceptron with threshold, whereas it approaches one with zero threshold. The
threshold as a function ofα in the one-step RSB and the RS ansatz is also included.

can see in figure 2. This solution, for both RS and one-step RSB, could have been
expected from examining equations (23). However, above a critical value of the normalized
example number,α > αp, we find a second solution to the saddlepoint equations, which is
characterized by a non-zero threshold and a fraction ofwrongly on errors smaller than1

2
(see figures 1 and 2). The value ofαp can be seen to be significantly smaller for one-step
RSB than for RS. This is found to be true for all finite stabilities, which will be examined
in more detail in section 3.4 where we examine the phase transition as a function of the
threshold stabilityκ.

One should note that, although a zero threshold solution (to which we will refer to asθ0)
still exists and is identical to the solution of a perceptron without threshold, it is, however,
not a physically viable solution for the perceptron with threshold as it exhibits a higher free
energy (i.e. larger error rate, as shown in figure 1) than the non-zero threshold solution (to
which we will refer to asθ ) and is therefore to be neglected in the thermodynamic limit.
This illustrates that a solution to the saddlepoint equations found for any given replica ansatz
is not necessarily unique.

Going back to figure 1, one finds for further increasingα→∞ the error rate of theθ0

solution approaches an asymptotic error rate which is higher than1
2, the asymptotic error

rate of theθ solution. The qualitative difference between the error rates can be better
understood by examining the PSD and we will therefore defer the discussion of the error
limit to section 3.3.

The bifurcation point in solution space is a second-order phase transition as all order
parameters (see e.g.θ(α) and q0(α) in figure 2) are continuous but non-differentiable for
α = αp. In particular, for the threshold the numerical data strongly indicates the functional
relationship

θ ∝ [log(α)− log(αp)]
γ (38)

for both RS and one-step RSB theory with an exponentγ which is in very good agreement
with the mean-field theory exponent of1

2, and a prefactor which isκ dependent and
consistently larger for one-step RSB. We further have spontaneous symmetry breaking in
the space of thresholdsθ as the solution is invariant under sign change ofθ . The external
field in this case is the output bias,mo, as it breaks the symmetry inθ space and ‘smears’
out the phase transition, as will be studied more closely in section 3.5.
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The phase transition atαp stems from the competition between optimizing the weights
(or hyperplane angle) and a deterministic bias in the output of the perceptron which is
controlled by the threshold. Whereas it is self-evident that for a biased output distribution
it is also sensible to bias the output of the student with a non-zero threshold, this is only
the case for an unbiased output distribution when the error rate becomes large enough for
a given stabilityκ. To understand this more clearly, the distribution of pattern stabilities
together with the total error rate is studied around the phase transition in section 3.3.

In order-parameter space we find qualitatively very different solutions, as can be seen in
figure 2 for the order parametersq0 andθ . For theθ solution, we find the threshold increases
towards infinity following the above functional relationship of equation (38) andq0 decaying
to zero, where we find numericallyq0 ∝ 1/α, with the possibility of minor logarithmic
corrections. For theθ0 solution on the other handq0 approaches 1. To investigate the
functional behaviour of theθ0 solution in more detail, one can expand the free energy using
the numerically justified ansatzx ∝ 1/α andw ∝ √α for α → ∞. Although we find
the same scaling behaviour as [5], we have found that their prefactors are inconsistent with
our analytical solutions and the numerical data. In particular, the solutions of the order
parameters are to leading order

1q = 2

log(α)
x = 9

4

eκ
2/2

α[logα]3/2
and w = 4

9

√
πe−κ

2/4√α[logα]9/4. (39)

These solutions are, however, only good approximations provided1q is small and
logα � log(logα), i.e. in generalα � 1010 and is therefore not very accurate in the
region where numerical solutions were obtained. The solutions suggest that for increasing
α the degree of RSB becomes more severe asm[m = wx/β] and (1− q1)[1− q1 = x/β]
decay to zero faster than the temperature.

For the solution withθ 6= 0, we have not been able to find closed-form asymptotic
solutions to the saddlepoint equations. In fact, closed-form asymptotic solutions are not
even feasible for the much simpler RS theory. The numerical analysis is quite difficult for
bothx andw; w andwx may at most diverge algebraically in logα with powers smaller than
one, whereasx seems to have a similar logα behaviour, but the power is even smaller in
magnitude and its sign seems to beκ dependent. As the error in the numerical calculation
of the order-parameter solutions increase withα and the prefactor in the power laws in
logα are very small, we were not able to determine the value of the powers accurately.
A divergent behaviour ofwx indicates that the degree of RSB becomes less severe for
increasingα, which should be contrasted with theθ0 solution where the degree of RSB
becomes worse.

We find the different asymptotic behaviours for the two sets of order-parameter solutions
puzzling; especially, the asymptotics of the order parameterq0—the typical overlap between
two replicas in different solution spaces. Whereasq0 decays algebraically inα to zero
for the θ solution, i.e. weight-vector solutions become totally uncorrelated, it approaches
1 logarithmically for theθ0 solution, i.e. the weight-vector solutions become absolutely
correlated. It has been argued before [5] that this asymptotic behaviour for the spherical
perceptron without threshold is incorrect (and one-step RSB must therefore be inexact at
least for a high storage level), since one should expectq0 to approach 0 forα → ∞ as
in this limit any weight vector should perform equally well on the training data. More
precisely, for loadsα greater than the capacity limitαc, the perceptron classifies only a
subset of the examples correctly and misclassifies the rest. For moderate loads and small
error rates, there must be a significant overlap between the sets of examples two weight-
vector solutions classify correctly. Therefore, the average overlap between weight-vector
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solutions should be non-zero and hence,q0 > 0. For very largeα and large error rates
ε, the smallest possible overlap between two sets of correctly classified examples should
decrease† and since the patterns are uncorrelated, the correlations between their respective
weight-vector solutions should decrease similarly. Hence, the smallest average overlap scale
in the replica ansatz should approach 0 forα→∞.

We will later return to this argument and the issue of the breakdown of one-step RSB
in the light of the asymptotics of the order parameterq0, especially in comparison with the
asymptotic solutions of the Ising perceptron, which we will present below.

3.2. Order-parameter solution space of the Ising perceptron

As mentioned in section 2.3, whereas it has been established that one-step RSB is not exact
for the spherical perceptron there has been some argument whether one-step RSB is exact
for the Ising perceptron, and it is therefore useful to compare the solution in order-parameter
space and their asymptotics for the two weight priors.

Figure 3. The error rates,ε, are shown as a function ofα with κ = 0.1 for the Ising perceptron
within the one-step RSB ansatz. Similar to the spherical perceptron there is initially only one
solution with a fraction of12 for wrongly onerrors,εon, and zero threshold (see figure 4). Again
we find a bifurcation point in solution space at a criticalαp, which is smaller than for the
spherical perceptron and similar behaviour of the fraction ofεon errors.

In figure 3 we show the evolution of the error rates and the fractions ofwrongly on
errors and in figure 4 the corresponding values of the order parametersq0 and θ for the
Ising perceptron in the one-step RSB ansatz in the same scenario, i.e. formo = 0 and
κ = 0.1. We find certain similarities but also striking differences to the results for the
spherical perceptron. At the capacity limitαI

c, q0 does not approach 1 as in the spherical
perceptron, indicating a single solution in weight space, but a finite valueq0 < 1, i.e.
several correlated solutions exist atαI

c. As for the spherical perceptron, the solution to
the saddlepoint equations is initially unique and exhibits a zero threshold. As the error
increases for growingα, we find a similar second-order phase transition in order-parameter
space, with the emergence of a second solution to the saddlepoint equations characterized
by a non-zero threshold atα = αp. For the threshold, the numerical data supports the same
mean-field power-law behaviour of equation (38).

† In fact, for the perceptron with zero threshold andκ > 0, one findsε > 1
2 for α large enough and the sets of

correctly classified patterns for two solutions could be disjoint.
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Figure 4. The one-step RSB overlap,q0, of the Ising perceptron for theθ solution goes to
zero asα →∞, whereas it approaches a finite value(q0 = 0.511 14) for the θ0 solution. The
threshold as a function ofα grows logarithmically to infinity.

In the asymptotic limit of infinite example load, we again find that the RSB overlap,q0,
approaches a finite limit for theθ0 solution, which isκ dependent but always strictly less
than 1, whereas it converges against zero for theθ solution following a power-law decay
q0 ∝ α−1.

We further find for the Ising perceptron without threshold that the order parametery

approaches a finite value asq0, whereasv, which is the equivalent ofwx in the spherical
case, decays asv ∝ 1/

√
α, similar to the spherical perceptron, indicating that the degree of

RSB becomes more severe for increasingα.
We would like to point out that the asymptotic result ofq0 violates the qualitative

argument in [5], which demandsq0 → 0 for α → ∞, although it has been argued that
one-step RSB may be exact for the Ising perceptron. In order to exclude with certainty that
no solution to the saddlepoint exists which is characterized byq0→ 0, we have carried out
substantial numerical and analytical work for the special caseκ = 0 even forα > 1010,
where the numerical solutions to the saddlepoint equations (33) become unreliable due
to the inherent inaccuracy of the numerical integrations. The saddlepoint equations were
expanded in a Taylor series inv, for which the dominant terms of all integrals can be solved
analytically for κ = 0. This expansion was in excellent agreement with previous results
and also provided accurate results forα values, where the solutions to the full equations
were inaccurate. However, an extensive numeric search for solutions withq0 andy small
was unsuccessful even forα > 10200. This could be confirmed by the fact that algebraic
saddlepoint equations, obtained by expanding the equations further for smallq0 andy, have
only unphysical complex roots.

In the numerical analysis for theθ solution, it is again difficult to find the exact power-
law exponents and possible logarithmic corrections. However, we find exact relationships
between order parameters. The conjugate order parameter,y, decays as 1/

√
α. This suggests

a relationship withq0 as y2 ∝ q̂0, and indeed we findq0/y
2 ∼ 1 for large α. The

order parameter,v, diverges logarithmically inα and we findv/θ ∼ 2κ as the asymptotic
behaviour, again indicating that the degree of RSB of theθ solution decreases for largeα.

These functional relationships can be confirmed by a series expansion of the free energy
aroundq0 = 0 andy = 0, followed by an asymptotic expansion inθ and v, where we



Threshold-induced phase transitions in perceptrons 3487

assume† w.l.o.g. θ > 0. The later expansion is, however, only valid in the region where
θ − κ � 1. The saddlepoint equations of∂f/∂y and∂f/∂θ give to leading orderq0 = y2

andv = 2κθ , in agreement with the numerical data. Inserting∂f/∂v in ∂f/∂q0 gives

√
q0 = y = log(2)

κ
√
α
.

The remaining saddlepoint equation,∂f/∂v, determiningθ ,

exp

[
−1

2
(θ − κ)2

]
− exp

[
−1

2
(θ + κ)2

]
=
√

2π log(2)

κα
(40)

does not have a closed-form solution. However, forθκ � 0 an approximate solution can
be found

θ ≈ κ +
√

2

[
log

(
κα√

2π log(2)

)]1/2

. (41)

Whereas the analytical equations fory and q0 and the solution ofθ , obtained by solving
equation (40) numerically, fit the numerical solutions of the full saddlepoint equations very
well even for moderate values of 26 θ 6 6, the closed-form solution forθ (41) is only a
good approximation forκ > 1 in this region.

3.3. Pattern stability distribution

The phase transition in order parameter space is driven by the increase of the error rateε

for increasing example loadα. If is therefore natural to examine the change in the PSD of
the perceptron around the critical loadαp. We first examine the PSD of the Ising perceptron
as it has a simpler structure (it lacks the gap and theδ-contribution of the spherical case).

Figure 5. (a) The PSDs,p(3), of the Ising perceptron is shown as a function of the pattern
stability,3, for κ = 0.1 for an example loadα(θ = 0.5) = 59.492 close to the phase transition
point [αp(κ = 0.1) = 53.021]. Theθ0 solution predicts the same PSDp± for bothσ = +1 and
σ = −1 patterns. For theθ solution this symmetry is broken. (b) The difference in the total
PSD (1p ≡ p+ + p− − 2p±) as a function of3 for various values ofα : α(0.1) = 53.266,
α(0.2) = 54.008 andα(0.3) = 55.266. The asymmetry of1p(3) caused by the discontinuity
at the decision boundary leads to the reduction in the error rate of theθ solution.

† For θ < 0, one has to replaceθ by |θ | in all the equations.
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In figure 5(a), PSDs of the Ising perceptron for patterns with targetsσ = +1 and
σ = −1 are plotted for both theθ0 and θ solutions for stabilityκ = 0.1. The example
load α was chosen slightly larger thanαp and determined as a function of the value of
thresholdθ , e.g. in figure 5α(θ = 0.5) = 59.492 (for comparisonαp(κ = 0.1) = 53.021).
The σ = ±1 PSDp± of the θ0 solution are identical. For theθ solution this symmetry is
broken and the PSDsp+ andp− are distorted around the former. Forθ > 0 the probability
in the unstablized region,3 < κ, has increased forσ = +1 patterns whereas it has reduced
for σ = −1 patterns, and vice versa for the stabilized region3 > κ.

All three distributions exhibit a discontinuity at the threshold stabilityκ which is
formally due to the exponentional factor e−v in equation (37). Although the functional
form of the PSDs (36) is quite complicated, the PSDs have almost conserved the Gaussian
form of the numerator. The means are shifted and dependent onσθ .

To assess the change in total error, it is more accurate to study the difference of the
total PSD(1p ≡ (p++p−)−2p±). In figure 5(b), 1p is shown for three values ofα even
closer to the critical point. One can see that the shift of the means of theθ PSDs removes
probability mass from the region close to the decision thresholdκ. Furthermore,1p(3) is
almost symmetric aroundκ. If this symmetry were perfect, the total error rate could not
be different for theθ0 andθ solutions. However, we find a distortion in the region3 ≈ κ,
which can be most easily depicted by the discontinuity atκ, which grows for increasing
α(θ).

We find quite similar results in the case of the spherical perceptron although due to the
gap and theδ-contribution in the PSD lead to a more complex behaviour. To make the effect
of these extra features more obivous, we have chosen a larger threshold stability,κ = 1, for
the spherical case. In figure 6(a), the one-step RSB PSDs of patterns with targetsσ = +1
andσ = −1 is shown for both solutions and as an example load ofα(θ = 0.5) = 2.0901

Figure 6. (a) The PSDs,p(3), of the spherical perceptron as a function of the pattern stability,
3, for κ = 1 for an example loadα(θ = 0.5) = 2.0901 close to the phase transition point
[αp(κ = 1) = 1.8706]. Again theθ0 solution predicts the same PSDp± for both σ = ±1
patterns, whereas this symmetry is broken for theθ solution. Theδ-peak is indicated by the
arrows and its probability mass is given byP±δ = 9.5251× 10−2, P+δ = 9.1652× 10−2

and P−δ = 1.0563× 10−1. (b) The difference in the total PSD(1p ≡ p+ + p− − 2p±)
as a function of3 for various values ofα : α(0.1) = 1.8790 [1Pδ = 2.3490× 10−4],
α(0.2) = 1.9076 [1Pδ = 1.1915× 10−3], and α(0.3) = 1.9469 [1Pδ = 2.6226× 10−3].
The reduction in the error rate of theθ solution seems to be mainly caused by the increase of
the gap.
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(for comparisonαp(κ = 1) = 1.8706). Again we find that theσ = ±1 PSDs of theθ
solution are distorted around the PSD of theθ0 solution.

The distributions have three components. For3 < κ, the distribution looks similar to a
Gaussian hump with means which vary with the value of−θ . This regime is separated by a
visible gap to the stabilized patterns, with a gap width which is widened for theθ solution.
One further finds that the contribution of theδ-functions at3 = κ has increased for theθ
solution. The main probability mass of the stabilized patterns is found in the Gaussian-like
tail for 3 > κ.

To study the differences of the PSDs, we further show1p(3) for three values ofα
closer toαp in figure 6(b). We find less symmetry in1p than for the Ising perceptron,
but again total probability mass has been removed from the vicinity of3 = κ. The main
reduction in the error rate in this case seems to come from the widening of the gap. This
difference in probability mass has been partly shifted to theδ-contributions. The increase
of probability mass at theδ-peaks and the decrease of probability mass at the widened gap
is, however, between a factor of 10–100 times larger (and increasing forα→ αp) than the
reduction in the error rate for theα values studied in figure 6(b).

It is further interesting to study the limitα → ∞ as the error rate of theθ0 solution
approaches its asymptotic value, which is larger than the asymptotic error rate of theθ

solution of 1
2 as was shown in both figures 1 and 3. Theθ solutions in the limit of infinite

example load has been shown to be characterized by a threshold increasing to infinity and
the portion ofwrongly on errors decreasing rapidly to zero (see e.g. figures 1 and 2).

To study this limit more closely, we show the PSDs of the spherical perceptron in the
one-step RSB ansatz forκ = 1 and increasingα separately from theθ0 andθ solutions in
figure 7. For theθ0 solution (which is equivalent to the perceptron without threshold), both

Figure 7. The PSDs,p(3), of the spherical perceptron as a function of the pattern stability,
3, for κ = 1 and increasing example loadα. (a) The PSD of theθ0 solution and
α(θ = 0) = αp = 1.8706 [P±δ = 1.1029× 10−1], α(1) = 2.8878 [P±δ = 6.1194× 10−2],
α(2) = 10.800 [P±δ = 1.1017× 10−2], α(3) = 85.059 [P±δ = 9.2650× 10−4], α(4) =
1385.9 [P±δ = 5.1225× 10−5] andα(θ = 6) = 6.2488× 105 [P±δ = 3.4349× 10−8]. The total
PSD of bothσ = ±1 patterns approaches the zero mean unit variance Gaussian distribution. (b)
Both PSDs of theθ solution for a range ofα values (see above andα(θ = 1.5) = 4.0890). The
δ-contributions to theσ = ±1-PSDs forθ > 0 are given by (in order of increasing threshold):
[P+δ = 6.0682× 10−2;P−δ = 8.0595× 10−2], [P+δ = 3.2087× 10−2;P−δ = 4.9147× 10−2],
[P+δ = 1.3589× 10−2;P−δ = 2.4065× 10−2], [P+δ = 1.1555× 10−3;P−δ = 2.7075× 10−3].
Both PSDs approach half of the probability mass of a unit variance Gaussian distribution centred
at σθ .
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PSDs approach half the probability mass of a Gaussian distribution with zero mean and unit
variance. This is as expected, since the examples are uniformly distributed spatially and
a random-weight vector on the hypersphere has an average overlap (activation) with the
examples which is Gaussian distributed. As all examples with absolute activation smaller
thanκ are always counted as erroneous, the error rate approachesε = 1−H(κ) > 1

2 in the
α→∞ limit†.

For the θ solution on the other hand, both PSDs also approach (half the probability
masses of) unit variance Gaussian distributions but with means centred aroundσθ . Although
any weight vector will have a Gaussian distributed overlap, the activation is shifted due
to large threshold. This means that for infiniteα, the θ solution classifies the examples
deterministically as either all+1 or −1 depending on the sign of the (infinite) threshold,
resulting in an total error rate of12 irrespective of the stabilityκ.

One can assess the convergence rate of the error rate of the perceptron against the
asymptotic error rateε∞ from the numerical solutions of the saddlepoint equations. For the
θ0 solution, we find within the RS ansatz (independent of the weight prior), and within the
one-step RSB ansatz for spherical and Ising perceptron respectively

ε∞ − εRS∝ α−0.3333±1 ε∞ − εRSB∝ α−0.490±5 and ε∞ − εIRSB ∝ α−0.500±1

where the error indicates the uncertainty in the last significant digit only. The different
exponent in the power law for Ising and spherical perceptron in the one-step RSB ansatz
is due to a logarithmic correction in the spherical case, as can be confirmed by using the
results for the expansions of the saddlepoint equations (39) to calculate the asymptotic error
of the spherical perceptron in the RS and similarly the one-step RSB ansatz

ε∞ − εRS= 1

2

[
12e−κ

2

πα

]1/3

and ε∞ − εRSB= e−κ
2/4

√
π

[logα]1/4

√
α

. (42)

For theθ solution we find to similarly for the total error rate
1
2 − εRS∝ α−1.0002±2 1

2 − εRSB∝ α−1.04±4 and 1
2 − εIRSB ∝ α−1.04±4

for the three cases respectively. For theθ solution it was again difficult to measure the
powers in the one-step RSB cases very accurately due to possible logarithmic corrections.
This is supported by comparing the numerical predictions to our analytical results for the
Ising perceptron, where we find to leading order

1

2
− εIRSB = log(2)

2κθs

1

α
(43)

where θs is the solution for the threshold from equation (40) or its approximation (41),
which gives a logarithmic correction to the power law with exponent 1.

Comparing the predictions of the power-law decay of the error rate between theθ0 and
θ solutions, one notes two important differences. First, the exponent of the decay is twice
as large for theθ solution, where the error decays linearly withα, and a slower convergence
for the θ0 solution with

√
α. Second, the correction of theθ solution going from RS to

one-step RSB is only minor, a logarithmic term, whereas it is substantial for theθ0 solution,
a change in the exponent from13 to 1

2. This suggests that the effect of RSB for largeα is
more severe for the perceptron without threshold than with threshold. It also may indicate
that the effect of further RSB breaking should be less pronounced for theθ solution than
for the θ0 solution.

† This means that any random-weight vector on the hypersphere has the same error forα = ∞. In the case of
κ = 0 this corresponds to random guessing of the output with 50% chance of success.



Threshold-induced phase transitions in perceptrons 3491

Figure 8. The critical normalized example number,αp, as a function of the stability,κ, on
a log–log scale shows a power-law behaviour for small stability. The predicted power-law
behaviour using one-step RSB is significantly different to the one predicted from RS.

3.4. The stability dependence of the phase transition

In this section we will examine the dependence of the phase-transition point in order-
parameter solution space on the threshold stabilityκ. In figure 8,αp is plotted versusκ on
a log–log scale for both spherical and Ising perceptron in the RS and one-step RSB ansatz.
The critical point,αp, in solution space increases for decreasing stability but exists for all
non-zero stabilities, and exhibits a power-law dependence onκ for small stabilities with
αp→∞ asκ → 0. The numerical data predicts the exponents of the power laws as

αRS
p ∝ κ−3.000±1 αRSB

p ∝ κ−2.04±2 and αIRSB
p ∝ κ−2.0000±1

where the RS theory of the Ising perceptron only rescales the prefactor with the constant
2/π .

From figure 8, we can further conclude that the phase transition exists for all finite
stabilitiesκ > 0. The limitsκ → 0 andα→∞ are thereforenot interchangeable, i.e. the
‘point’ {κ = 0, α = ∞} is an unstable fixed point. Although,κ = 0 would have an error
rate of 1

2 at α = ∞ irrespective of the threshold, only theθ0 solution is accessible to the
perceptron for any finiteα and it has no access to theθ solution forα→∞.

As the phase transition seems to be triggered by the increase of the error rate above
a critical value, we also show the error rateεp = ε(αp) at the critical load, together with
its deviation from the asymptotic error rate12 in figure 9. One can see that the stability
has a dominant influence on the occurrence of the phase transition through the error rate.
For large stabilities theθ0 solution becomes already unstable for small error rates, with the
limit εp → 0 for κ → ∞. The difference in the critical error rate between the Ising and
spherical perceptron is greatest for moderate stabilitiesκ ≈ 1, which may be attributed to
the gap and theδ-contribution in the PSD of the spherical perceptron.

The RS theory not only underestimates the error for a given loadα, and, therefore, gives
the incorrect power law forαp, but also fails to predict the correct critical error rate. RS
fails especially for smaller stabilities, i.e. largeα as expected. This is especially obvious by
looking at the remnant error rate in figure 9, which decays with a power law. The exponents
can be also evaluated from the numerical data:

1
2 − εRS

p ∝ κ1.000±1 1
2 − εRSB

p ∝ κ0.993±2 and 1
2 − εIRSB

p ∝ κ1.000 00±1.



3492 A H L West and DSaad

Figure 9. The error rate,ε(αp), and its deviation from the asymptotic error rate1
2 is shown as

a function of the stability,κ, on log–lin and log–log scales respectively. The remnant error rate
1
2 − ε shows a power-law decay for smallκ. For larger stabilities, the phase transition occurs
for increasingly small error rates.

Although RS seems to give a reasonable power-law decay of the error, the prefactor is
blatantly incorrect. An asymptotic expansion for small thresholds and stabilities for the RS
theory gives

αRS
p =

8

9

√
2π

κ3
and 1

2 − εRS
p =

κ

2
√

2π
. (44)

Of more interest is the functional behaviour of the one-step RSB solution for small stabilities,
as the numerical solutions indicate a deviation from the pure power-law behaviour in both
the point of the phase transition as well as the asymptotic error. A similar analytic expansion
gives

αRSB
p√

logαRSB
p

= 1

2κ2
(45)

for which a closed-form solution does not exist. However, one can see that the deviation
from the pureκ−2 power-law behaviour ofαp is due to the additional logarithmic term in
αp.

For the Ising perceptron it is not possible to expand all of the equations as the order
parametersy andq0 have finite limits. However, the numerical solutions themselves give
us some insight. For the Ising perceptron there is no numerical indication that the critical
load, αp, or its error, εp, deviate from pure power-law behaviours in contrast with the
spherical case, which exhibit logarithmic corrections. Furthermore, for large stabilities the
phase transition occurs at a smaller error rate for the Ising than for the spherical perceptron,
whereas this characteristic is reversed for small stabilities, where the phase transition occurs
at a larger error rate. These differences between the two weight priors could either be
attributed to their respective weight-space structures, or it may indicate that one-step RSB
is correct in the Ising and incorrect in the spherical case.

3.5. Non-zero output bias,mo

For non-zero output bias,mo, the symmetry in the space of thresholdsθ is broken and we
find only solutions withθ 6= 0 for all α, with θ > 0 for mo < 0 and vice verse. Due to the
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Figure 10. (a) The evolution of the threshold,θ , with the example load,α, is shown for several
small values of the bias (see legend) around the critical load,αp, with constant stabilityκ = 0.1.
The phase transition is increasingly smeared out for growing magnitude of the bias. (b) The
evolution ofθ(α) over a wide range ofα for larger magnitudes of the bias,mo, shows the same
effect. The left-hand starting point of each curve depicts the capacity limit,αc, increasing with
growing magnitude of the bias.

symmetry of the solutions formo→−mo⇒ θ →−θ , one can assumemo < 0 andθ > 0
without loss of generality. Below, we will discuss only the Ising perceptron as we found
the behaviour for both binary and real weights to be quite generic.

In figure 10 the threshold of the Ising perceptron is shown as a function ofα for various
values of the output bias,mo, at fixed stabilityκ = 0.1. In figure 10(a), one sees that, for
a very small magnitude of the bias, the evolution of the threshold closely approaches the
curve for zero bias. Similar behaviour can also be found for the other order parameters.
The largest deviations between the zero-bias solution and the finite-bias solution can always
be found around the point of the phase transition atαp. In this sense, the output bias,mo,
can be seen as an external field which ‘smears’ out the phase transition.

In figure 10(b), we show the evolution of the thresholdθ for larger magnitudes of the
bias over a wide range of loadsα. For largeα the threshold tends to infinity, whereas
the left-hand starting point of each curve depicts the capacity limit,αc, increasing with
increasing magnitude of the bias.

For largeα, one can expand the free energy of the Ising perceptron, similarly to the
zero-bias case. One finds that the leading order of∂f/∂y gives q0 = y2 as for zero bias
case. The leading order of∂f/∂θ implies

v = 2|θs|
[
κ + 1

2|θs| log

(
1+ |mo|
1− |mo|

)]
= 2|θs|κ∗ (46)

whereθs is the solution of the threshold for a given loadα andκ∗ is a modified effective
stability, which depends on the bias and on the solution of the threshold (i.e. ultimately on
α). Further inserting∂f/∂v in ∂f/∂q0 yields

√
q0 = y = log(2)√

1−m2
oκ
∗

1√
α
. (47)

The remaining saddlepoint equation∂f/∂v to determineθs is given by

(1+ |mo|) exp

[
−1

2
(|θ | − κ)2

]
− (1− |mo|) exp

[
−1

2
(|θ | + κ)2

]
=
√

2π log(2)

κ∗α
(48)
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and cannot be solved forθ in closed form. The approximation used in the zero-bias case
in equations (40) and (41) (see section 3.2), which neglects the less dominant term on the
left-hand side of equation (48), still does not make a closed-form solution feasible, due to
the θ dependence ofκ∗.

For the asymptotic error rate one findsε∞ = 1
2(1− |mo|) irrespective of the stability

κ—the intuitive result if one classifies the larger call of example correctly and misclassifies
the smaller example class by using a threshold of infinite absolute value. The asymptotic
error rate is approached via

ε∞ − εIRSB = log(2)

2|θs|κ∗
1

α
. (49)

As both θs and κ∗ are dependent onα, the asymptotic behaviour deviates from a pure
power-law behaviour.

4. Summary and conclusions

In this paper we have investigated the threshold Boolean perceptron above saturation for
both spherical and binary weight priors. Even for unbiased input and output distributions, we
find that the introduction of a threshold triggers interesting phenomena for finite stabilities
κ > 0 which are not otherwise present. Namely, we find a second-order phase transition
in order-parameter space at a stability-dependent critical load,αp(κ), with spontaneous
symmetry breaking in the space of thresholdsθ . This phase transition is driven by the
error rate as we find that the perceptron without threshold exhibits a higher asymptotic error
(ε∞ = 1−H(κ)) than the perceptron with threshold(ε∞ = 1

2).
Zero stabilityκ = 0 constitutes a special case, as one does not find a phase transition

for finite α. This means that the limitsκ → 0 andα→∞ arenot interchangeable and the
‘point’ {κ = 0, α = ∞} is an unstable fixed point. One could argue that this point is in fact
a first-order parameter transition, leading to a discontinuous jump in order-parameter space.

Further we have identified the bias of the output distribution,mo, with the external
magnetic field in spin systems that breaks the symmetry inθ space and ‘smears’ out the
phase transition. Whereas a non-zero output bias has, therefore, a profound effect on the
performance of perceptrons, we find that a non-zero input bias can always be absorbed by
a rescaling of the target stabilityκ. These results also suggest that one should not remove
the threshold in favour of a ferromagnetic bias in the couplings as we have found that a
threshold can always compensate for this bias but not vice versa.

In the asymptotic limitα → ∞ and finite stabilityκ > 0, we not only find unequal
values for the asymptotic error rate but strikingly different solutions in order-parameter
space for the perceptron with and without threshold, especially, for the asymptotics of the
one-step RSB overlapq0. In the case of the spherical weight constraint, we find thatq0

approaches 1 for the perceptron without threshold, whereasq0 decays to 0 for the perceptron
with threshold. For the Ising perceptron we find a similar behaviour: the solution with non-
zero threshold is characterized by a vanishing overlapq0 for increasingα and the solution
with zero threshold exhibits a finite limit ofq0 for infinite load which is stability dependent
and strictly smaller than 1.

It has been argued previously [5] that the above asymptotic behaviour for the spherical
perceptron without threshold indicates that one-step RSB cannot be exact at high load. For
a correct solution one would expect the smallest overlap scaleq0 to approach 0 forα→∞
as in this limit any weight vector should perform equally well.
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Recently, it has been shown by performing a two-step RSB calculation [18] that one-
step RSB is indeed inexact for the spherical perceptron without threshold. Furthermore, it
has been proved [18] that any model with a gap in the PSD (such as the spherical perceptron
with or without threshold and Gardner–Derrida cost function) necessitates infinitely many
RSB steps to yield the exact result.

These findings give some support to the validity of the qualitative argument made above.
A strict application of this argument would imply that one-step RSB is also inexact for the
Ising constraint, which has been the source of some debate [6, 24, 25]. As the PSD of the
Ising perceptron with the Gardner–Derrida cost function does not exhibit a gap, the proof
in [18] is not able to resolve this issue.

We have some doubts if one can have enough confidence in the qualitative argument
of [5] to argue that one-step RSB is incorrect in the Ising model. First, we believe that
one should be very careful to apply such an intuitive argument to models with discrete
weights. For example, whereas all overlaps in the spherical model converge to 1 at the
capacity limit, leaving just a single solution, the smallest overlap scaleq0 remains finite but
strictly smaller than 1 for the Ising model, which is initially not really intuitive (see [6] for a
plausible explanation), as it suggests several solutions at the capacity limit. A similar effect
may be present in the limitα→∞. Second, one may argue, that the argument of [5] can
demandq0 = 0 strictly only atα = ∞, whereas it implicitly assumes a smooth transition
of q0→ 0 for α→∞, which does not take into account the possibility of a discontinuous
transition. We have arguably found a possibility for such a discontinuous transition for the
caseκ = 0 atα = ∞, from theθo solution withq0 = 1 to theθ solution withq0 = 0.

To resolve the issue of the exactness of one-step RSB in the Ising perceptron with
Gardner–Derrida cost function, it may be worthwhile to re-examine the two-step RSB
solution in [6] numerically for largeα and/or to calculate the stability of the one-step
RSB solution.

Nevertheless, results concerning the asymptotic behaviour of the error rate and the order
parameters in this paper suggest that the effect of further RSB breaking may be even smaller
for both the Ising and the spherical perceptron with threshold in the regime of theθ solution
than has been found for theθ0 solution of the spherical perceptron in [18]. The one-step
RSB solution may therefore remain sufficiently accurate for many practical purposes like
calculating the capacity of multilayer networks produced by constructive algorithms [10, 11],
where a treatment with a two-step RSB solution is computationally not feasible.
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